Determination of the total mercury in contaminated soils by direct solid sampling atomic absorption spectrometry using an AMA-254 device and radiochemical neutron activation analysis

Jiřina Sysalová a,⁎, Jan Kučera b, Marek Fikrl b, Barbora Drtinová c

a Institute of Chemical Technology, AAS Laboratory, Technická 5, CZ-166 28 Prague 6, Czech Republic
b Nuclear Physics Institute ASCR, CZ-250 68 Hasičer-Bež 130, Czech Republic
c Czech Technical University, Faculty of Nuclear Science and Physical Engineering, Department of Nuclear Chemistry, Břehová 7, CZ-115 19 Prague 1, Czech Republic

High total mercury (T-Hg) contents in soils, up to 25 mg kg⁻¹, were determined by two independent methods: a one-purpose atomic absorption spectrometer AMA-254 (Advanced Mercury Analyzer) with direct solid sampling and radiochemical neutron activation analysis (RNAA), using sample masses of 10 mg to 25 mg and about 150 mg, respectively. An excellent agreement between results of both methods was obtained. For quality control (QC) purposes, NIST SRM 2711 Montana Soil and NIST SRM 2711a were analyzed by both methods using the above sample masses. The results obtained compared with the NIST certified values within the uncertainty margins, thus proving the accuracy of the procedures employed. A new mercury value of 1.42 mg kg⁻¹ ± 0.12 mg kg⁻¹ was determined in NIST SRM 1648a Urban Particulate Matter by RNAA. For achieving accurate results by the AMA-254 spectrometer, optimizing of the analytical procedure was necessary, consisting of analyzing small (10 mg to 25 mg) sample masses. It has been found that the cryogenic grinding used provided sufficiently representative and homogeneous samples. In view of the decomposition procedures employed in AMA-254 and RNAA procedures, it can be inferred that the mercury contained in QC samples was presumably bound in an organic fraction. A test in which HgS was analyzed by RNAA showed that even mercury present in sulfide form would be fully recovered using the procedures employed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mercury exists in the environment in a variety of chemical and physical forms as a result of both natural and man-made releases. The chemical forms involve elemental mercury, inorganic mercury species, and organic mercury species, which exhibit different toxicities for organisms, methylmercury being the most toxic species. Therefore, increased attention has recently been paid to the determination of Hg species in environmental and biological samples [1–3]. Nevertheless, reliable procedures for the determination of T-Hg are still in demand, namely in pollution monitoring, in order to evaluate the efficiency of extraction methods used for speciation analysis, and subsequently in many important decisions. Such procedures usually involve sample digestion as the first step. For soils, various reagents were used, namely concentrated acids, e.g., HNO₃ alone [4,5] or in a mixture with H₂SO₄ [6] or HCl [7–9]. The American Society of Agronomy has proposed the use of a microwave digestion method with a mixture of H₂SO₄ + HNO₃ + HCl [10], while a combination of HNO₃ + HCl was proposed by the U.S. EPA [11]. The International Atomic Energy Agency proposed a method based on oxidative digestion that employs a mixture of concentrated HNO₃ + H₂SO₄ + BrCl [12]. All these reagents and many others, including aqua regia extractions and the use of HF were reviewed in detail by Issaro et al. [13] and were also mentioned in a paper describing the preparation and characterization of a soil reference material from a mercury contaminated site [14]. Following one of the above digestion procedures, the determination of T-Hg in soils and sediments is usually carried out by cold vapor atomic absorption spectrometry (CV AAS) or cold vapor atomic fluorescence spectrometry (CV AFS) measurement [14,15]. Nowadays, procedures for fast, direct solid sampling AAS are available, which are compliant to EPA 7473 and ASTM D6722 methods, using AMA-254 (Leco, USA) or DMA-80 (Milestone, USA) devices. Solid sampling–graphite furnace AAS has also been developed [16], which can also be transformed into a screening method.

We present a simple direct solid sampling atomic absorption spectrometry method using an AMA-254 device for the determination of T-Hg in soils highly contaminated from different pollution sources. This method is fast and much more effective compared with those using a digestion step followed by CV AAS or CV AFS. Excellent accuracy of the T-Hg determination at the level up to 25 mg kg⁻¹ using AMA-254 was demonstrated by analysis of several US NIST soil standard
reference materials (SRMs) and by a comparison with results of RNAA achieved for the same contaminated soil samples and NIST SRMs.

2. Experimental

2.1. Sampling and sample treatment

Samples of contaminated soils from two localities with different pollution sources were analyzed. The first site was an abandoned waste storage ground of a former incineration plant in the suburb of Hradec Králové, Czech Republic, in which agricultural waste, such as fertilizers, preservatives, pesticides, industrial and chemical industry wastes, such as oil, organic solvents, metals, halogens, sulfur, dyes, etc., were incinerated between the years 1993 and 2002. The hazardous waste was stored prior to incineration in a depository without protection and leakage control during the operational period of the incinerator. The Hg content in several soil samples from the former waste depository exceeded the maximum permissible limit of 0.8 mg kg$^{-1}$ [17] and in separate experiments Hg$_{0}$ and methyl mercury CH$_3$Hg$^+$ were identified as the dominant species there. The second sampling site was selected in the vicinity of a former phenyl mercury chloride-based fungicide production plant near Příbram, Czech Republic. Although the use of mercury-based fungicides was discontinued at the end of 1980s, the highly elevated Hg contents in soil are still observed close to the plant, reaching up to 10 mg kg$^{-1}$. Similarly, even four mercury species were detected in this sampling site: Hg$_{0}$, inorganic mercury Hg$^{2+}$, methyl mercury CH$_3$Hg$^+$ and phenyl mercury PhHg$^+$ (to be published). Soil pollution with lead, arsenic, cadmium and zinc also occurs in this location due to mining and smelting industry and due to a high content of these elements in the parent rock [18].

The soil samples were collected from the upper layer (0–20 cm), air-dried at laboratory temperature (22–24°C), sieved through a nylon 2-mm screen and 5-g sample portions were further subjected to cryogenic grinding at liquid nitrogen temperature (77 K) using a SPEX 6770 Freezer Mill (SPEX SamplePrep, USA) to achieve a degree of homogeneity as high as possible. Cryogenic grinding provides not only perfect sample disintegration, but also prevents possible losses of volatile mercury forms by warming up of samples in common planetary ball mill devices. Three samples from each locality were selected for analysis.

Control samples of NIST SRMs were analyzed without any treatment, in the “as received” state. Moisture content was determined on non-analyzed aliquots according to instructions in the respective certificates [19–21] and accounted for.

2.2. Determination of T-Hg with AMA-254

The advanced mercury analyzer AMA-254, originally developed by Altec, Ltd., Czech Republic as an advanced version of Trace Mercury analyzer TMA-254 [22], is a single-purpose atomic absorption spectrometer for determination of mercury traces in various solids and liquids without sample pre-treatment or pre-concentration. A sample is combusted in an oxygen-rich atmosphere (99.5%) and the evolved gasses are then transported in 5 mL of concentrated HNO$_3$ in a microwave heated Teflon vessel under elevated pressure in an ERTEC® Magnum II (Poland) device. The quartz glass splinters and a non-decomposed mineral fraction of the samples were separated by filtration over a piece of glass wool in a glass tube, thoroughly washed with deionized water and rinsed with deionized water. Radiochemical separation of 203Hg was carried out by extraction with two portions (10 + 5 mL) of 0.01 mol L$^{-1}$ nickel diethyl dithiocarbamate (Ni(DDC)$_2$) in chloroform from dilute HNO$_3$ (approximately 1 mol L$^{-1}$). The separated 15 mL Ni(DDC)$_2$ fractions were counted in 30-mL polyethylene vials for 2 h with an coaxial HPGe detector (relative efficiency 78%, FWHM resolution of 1.8 keV, both for the 1332.5 keV gamma line of 60Co) coupled to a computer controlled Canberra Genie 2000 gamma-spectrometer (Canberra, USA). The 279.2 keV gamma-line of 203Hg was used for Hg quantification by comparison with that of an Hg standard. The Hg standard was prepared by dissolution of metallic mercury in concentrated HNO$_3$ under reflux. From a stock solution with the mercury concentration of 6.575 mg L$^{-1}$ ± 0.033 mg L$^{-1}$ in dilute HNO$_3$ (1:10) a 100 μL aliquot was deposited in a quartz ampoule and sealed. After irradiation, the mercury standard was carefully washed out from the ampoule, diluted 1:10 in a volumetric flask and a 250 μL aliquot, which contained 16.44 ng ± 0.13 ng of Hg was made to 15 mL for gamma-spectrometry measurement. The mercury separation yield was 99.4% ± 0.5% (x ± s.d., N = 3) as determined in model experiments by spiking non-irradiated soil samples with the 203Hg radotracer. To three 100 μL aliquots of the mercury stock solution, the same volume of a saturated water solution of thioacetamide was added into the quartz ampoules, which were sealed, and the ampoules were warmed up in a water bath until HgS precipitated.

3. Results and discussion

Results of the T-Hg determination in contaminated soils achieved by two independent methods, AMA-254 and RNAA, are compared in Table 1. Three replicates were analyzed by the former technique, while a single aliquot was assayed by the latter technique and the combined uncertainty was evaluated by taking into account all important uncertainty sources. An excellent agreement of the AMA-254 and
RNAA results can be seen in Table 1. The agreeable results were obtained by analysis of rather low, up to 10-mg sample portions by AMA-254 and approximately 150-mg sample portions by RNAA. This means that sufficiently homogeneous and representative soil samples were prepared by cryogenic grinding, originally termed "brittle fracture technique" [24]. Table 2 shows results of the accuracy test, in which triplicates of NIST SRM 2711 Montana Soil [19] and NIST SRM 2711a Montana II Soil [20] were analyzed by both AMA-254 and RNAA methods.

Our values agree with the NIST certified values within the uncertainty margins, thus proving the accuracy of our results achieved by both methods. The excellent agreement of all results for contaminated soils and NIST SRMs 2711 and 2711a is confirmed by both AMA-254 and RNAA methods, which can be demonstrated by the equation of a regression line $y = 0.9661x + 0.0184$ with a regression coefficient $R^2 = 0.9993$, where x and y stand for the Hg concentration determined by RNAA and AMA-254, respectively. Another proof of agreement of all eight pairs of results obtained by both methods is provided by Student’s t-test, which yields $t = 0.075 < t_{crit}$ ($v = 14, \alpha = 0.05$) = 2.145. Noteworthy, the accuracy test of AMA-254 results was successfully carried out with about 10 times lower sample masses than the minimum sample intake given in the certificates for NIST SRM 2711 and 2711a [19,20]. This proves excellent homogeneity of these NIST SRMs for Hg.

Since there is no certified value of Hg in reference materials of air particulate matter, which are needed in air pollution studies, we also determined Hg in NIST SRM 1648a Urban Particulate Matter by RNAA. The value found of 1.42 mg kg$^{-1}$ ± 0.12 mg kg$^{-1}$ appears similar to those of 1.07 mg kg$^{-1}$ ± 0.010 mg kg$^{-1}$, 1.02 mg kg$^{-1}$ ± 0.005 mg kg$^{-1}$ [25] and 1.16 mg kg$^{-1}$ ± 0.18 mg kg$^{-1}$ [26] determined by other authors in a predecessor of this SRM, in NIST SRM 1648.

The AMA-254 spectrometer has been especially designed for determination of trace mercury concentrations. It provides a detection limit as low as 0.01 ng and its follows from the working range of the device that the maximum amount of mercury in a sample should not exceed 500 ng [27] due to a limited capacity of the amalgamator. The upper limit of the working range of a similar DMA-80 device is somewhat higher, namely 1.2 μg [28]. Moreover, high mercury contents often cause a memory effect, which should be eliminated by repeated incorporation of a cleaning process and blank controls into a series of determinations. Even some interference could be observed due to high contents of several heavy metals or carbon in contaminated complex matrices. Various ways were recommended to overcome these problems, e.g., a certain sample pre-treatment, which could be a potential source of errors (mercury contamination and/or loss), if the procedure is not tested carefully [29] or dilution of samples with a high mercury content with suitable analyte-free substances, such as quartz sand [30] or quartz powder [31]. We successfully solved the problem of accurate mercury determination by AMA-254 in highly contaminated soils by analyzing well homogenized, representative small sample masses (in the range of 10 mg–25 mg). The homogeneity degree can be inferred from the mean relative standard deviation of 4.5% (range 0.03% to 9.1%) of three replicate analyses performed with AMA-254. Further testing would be necessary to show that the homogeneity is fully substantiated at the sample masses used.

The agreement of AMA-254 and RNAA results for NIST SRMs 2711 and 2711a with the NIST certified values also suggest that mercury is bound in these materials in a fraction, which is decomposed by combustion and microwave assisted decomposition with HNO$_3$, respectively, i.e., presumably in an organic fraction. The decomposition of precipitated HgS by the microwave assisted acid decomposition followed by RNAA yielded Hg recovery of 98.9% ± 0.4% (x ± s.d., $N = 3$). This proves that mercury, if present as HgS, in the samples analyzed, is fully converted to the analytical signal by both procedures employed, in addition to that contained in the organic matrix. Since we have also found AMA-254 and RNAA results for the contaminated soils studied in agreement, we may safely presume the same mercury speciation in these samples as in the QC samples analyzed.

4. Conclusions

Simple, direct solid sampling atomic absorption spectrometry methods are in demand for T-Hg determination in environmental matrices. For this purpose, commercially available devices, such as AMA-254 or DMA-80 spectrometers are available. Since these devices have especially been designed for mercury determination at trace and ultratrace levels, it should carefully be examined that the upper limit of their working range (0.5 μg to 1.2 μg for AMA-254 and DMA-80, respectively) is not exceeded in analyzing samples with high mercury contents, because this would lead to negatively biased results. Unlike other authors, who employed the dilution of high contents of Hg in heavily polluted samples with an inert matrix [30,31], we used low masses (10 mg to 25 mg) of well homogenized, yet representative samples to comply with requirements for accurate Hg determination using AMA-254, i.e., not to exceed the upper limit of the working range of 500 ng of Hg. We have also found that NIST SRM 2711 Montana Soil and NIST SRM 2711a Montana II Soil are sufficiently homogeneous with respect to Hg to allow accuracy testing at the above low-mass sample intakes. The new T-Hg value determined in NIST SRM 1648a is of importance for quality control of air pollution studies.

Acknowledgement

The authors are grateful to the Czech Science Foundation for the financial support of projects P503/12/0682 and P108/12/G108.
References

[35] C.V. Iyengar, K. Kaprekar, Application of the brittle fracture technique to homogenise biological samples and some observations regarding the distribution behaviour of the trace elements at different concentration levels in a biological matrix, J. Radioanal. Chem. 39 (1977) 301–308.
